
 

 

Technical Brief: Introduction to Camera Models 
 

Since the art of imaging was invented, humans have desired a way for recovering 3D information from 
2D images. Many problems in the science and engineering fields find great benefit in the ability to 
reason size, determine depth, and determine one’s location from image data. All of these processes are 
made possible by the use of calibrated camera models. Camera calibration, or more formally, geometric 
camera calibration, is the process of identifying the best fit camera model parameters for a physical 
camera. Before we can understand camera calibration, we first need to understand camera models and 
their usage. This brief document is one of a series of documents on camera calibration and the PixelTraq 
camera calibration process. Here, we introduce camera models and provide the relevant background to 
understand camera calibration. 

 
Camera Models 
Camera models are mathematical representations of the way that light travels from the real world to the 
image plane of a camera. Inside a camera, there are typically many lenses that are optimized for realizing 
a specific projection function for a range of wavelengths of light. Due to manufacturing tolerances, the 
lenses of a real camera are all slightly shifted relative to their ideal positions and slightly deformed 
relative to their ideal shapes. Many advanced optical raytracing software packages exist that can model 
these imperfections, but doing so requires a great deal of computation and many parameters. Instead of 
modeling a camera as its physical components (i.e. lenses, sensor, etc.) engineers and scientists have 
determined that the geometric relationship between a camera’s image and the world it sees can be 
modeled to high accuracy using a combination of relatively simple mathematical functions. All while 
using far fewer parameters than a full physical model would require. Various methods have been 
developed that characterize this behavior and decades of research have resulted in many well-
established mathematical representations [1] [2] [3] [4]. 

 

Figure 1 Complex ray tracing lens model(left), simplified camera model(right) 

Fundamentally, camera systems achieve the function of projecting the 3D world onto a 2D image plane. 
We can say that this projection is the main characteristic of cameras. When we project something, we 
reduce how many dimensions it has, hence the projection from 3D to 2D. Camera modeling seeks to 
identify the underlying projection function from 3D to 2D. Once we have identified this, we can do many 
things such as invert the projection function and back-project rays associated with points in the image 
coordinates. These projection and back-projection operations are fundamental to many technologies 
such as image distortion correction, stereoscopic vision, visual SLAM, etc.  



 

 

Central and Non-Central Projection 
The most common camera models can be split into two categories, central projection camera models 
and non-central projection camera models [5]. Central projection camera models have the common trait 
that they all model rays passing through a central point essentially replicating a classical pinhole camera. 
Although this may seem like a major assumption, most cameras can be very accurately modeled using 
central projection models. The variety of models in this class are generally differentiated by their 
representation of distortion. 

Non-central projection camera models do not follow this pinhole projection characteristic or combine 
other elements with central projection concepts to form hybrid models. This discussion will focus 
primarily on central projection style models, but the PixelTraq calibration and camera calibration in 
general are still relevant to all types of camera models including non-central ones. 

 

Figure 2 Central Projection Camera (left) and Non-central Hybrid Catadioptric Projection (right) 

 

Intrinsic and Extrinsic Parameters 
Camera models are typically broken up into two sets of parameters known as the intrinsic and extrinsic 
parameters. As their names imply, the intrinsic parameters characterize the inherent optical properties 
of the camera and the extrinsic parameters characterize its external position and orientation.  

Intrinsic parameters are the main thing that differentiates one camera model from another. The intrinsic 
parameters are used to implement the equations that determine what happens to light once it enters 
the camera. More detail will be provided on this in the next section, but some examples of typical 
intrinsic parameters are focal length, principal point and distortion parameters. 

For all camera models, the extrinsic properties describe the three-dimensional pose of the camera in 
space relative to a fixed reference frame. There are many different equivalent parameterizations that can 
be used to describe the three-dimensional pose of a camera. One of the most common is a rotation 
matrix and a position vector or their combined form, a homogeneous transformation matrix [5]. 
Regardless of which parametrization is used, they are all equivalent and can be used interchangeably.  

 



 

 

Table 1 Examples of Extrinsic Parameters 

Parametrization Notation 
Rotation Matrix and Position Vector 𝑅𝑅,𝑝𝑝 

Homogeneous Transformation Matrix 𝑇𝑇 =  �𝑅𝑅 𝑝𝑝
0 1� 

Quaternion and Position Vector 𝑞𝑞,𝑝𝑝 
 

 

Figure 3 Intrinsic and Extrinsic Parameters 

We call the frame with which the camera is described relative to, the world frame (𝑤𝑤), and the frame of 
the camera itself, the camera frame (𝑐𝑐). A typical notation has the frame with which we are describing 
another frame relative to as the first subscript and the frame we are describing as the second subscript. 
For example, 𝑇𝑇𝑤𝑤𝑤𝑤  describes the pose of the camera frame with respect to the world frame. Conveniently, 
this subscript notation has some other advantages. Using homogenous coordinates 𝑝𝑝  =  [𝑥𝑥,𝑦𝑦, 𝑧𝑧, 1]𝑇𝑇, we 
can transform points between two frames [5].  

𝑝𝑝𝑤𝑤 = 𝑇𝑇𝑤𝑤𝑤𝑤𝑝𝑝𝑐𝑐 

Or the using the inverse mapping 

𝑝𝑝𝑐𝑐 = 𝑇𝑇𝑤𝑤𝑤𝑤−1𝑝𝑝𝑤𝑤 = 𝑇𝑇𝑐𝑐𝑐𝑐𝑝𝑝𝑤𝑤 

Using this approach, we can transform points from the world frame into the camera frame or vice versa. 
The same operations can be performed using any of the previously discussed extrinsic parameter 
conventions, but the homogenous transformation matrices provide the most concise and convenient 
notation. 

The Pinhole Camera 
The simplest camera model is known as the pinhole camera model. This model follows a perfect 
perspective projection relationship. In reality, no camera behaves exactly like a pinhole camera, but as it 
has the most straight-forward geometric interpretation, it represents the behavior of an ideal camera.  



 

 

This type of projection is also sometimes called 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 due to the fact that a point in the image plane’s 
radial distance from an on-axis projection is determined by this relationship. The diagram below shows 
the mapping of points in the world space to points on the image plane for a pinhole camera.  

 

Figure 4 Ray trace of projection for the pinhole camera 

Examining this diagram, we can define the first few commonly known intrinsic parameters. The point on 
the image sensor plane where the on-axis ray aligned to the pinhole plane lands (shown here as 𝑢𝑢2) is 
known as the principal point. This can be defined in terms of X,Y coordinates in camera pixels and 
describes where the corner of the image plane lands relative to the center of projection. We will denote 
the principal point as 𝑐𝑐 = [𝑐𝑐𝑥𝑥 , 𝑐𝑐𝑦𝑦] 

The next intrinsic parameter of interest is the distance between the pinhole plane and the image sensor 
plane. This is known commonly as the effective focal length, EFL, or simply, focal length. 

Looking at the relationship between a point 𝑝𝑝1����⃑ = [𝑥𝑥1,𝑦𝑦1, 𝑧𝑧1] in object space and its projection 𝑟𝑟1���⃑ =
[𝑢𝑢1,𝑣𝑣1] in the image space, we can determine the following geometric relationship: 

𝑟𝑟1𝑥𝑥 =  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝜃𝜃1 = 𝑓𝑓
𝑥𝑥1
𝑧𝑧1

  

Expanding this to two dimensions we find 

𝑟𝑟1𝑥𝑥 =  𝑓𝑓
𝑥𝑥1
𝑧𝑧1

 , 𝑟𝑟1𝑦𝑦 = 𝑓𝑓
𝑦𝑦1
𝑧𝑧1

 

Commonly this is represented in pixel coordinates by multiplying the focal length by the pixel pitch 𝑓𝑓𝑥𝑥 =
𝑠𝑠𝑥𝑥𝑓𝑓 and 𝑓𝑓𝑦𝑦 = 𝑠𝑠𝑦𝑦𝑓𝑓. It is common to add a skew term 𝛼𝛼 to account for skew between the pixel axes. For 
convenience, we set 𝑥𝑥�  =  𝑥𝑥/𝑧𝑧 and 𝑦𝑦�  =  𝑦𝑦/𝑧𝑧 Finally, we can add in the principal point to get the full 
mapping from object space to image space: 

�𝑢𝑢𝑣𝑣� =  �
𝑓𝑓𝑥𝑥𝑥𝑥� + 𝛼𝛼𝑦𝑦� + 𝑐𝑐𝑥𝑥
𝑓𝑓𝑦𝑦𝑦𝑦� + 𝑐𝑐𝑦𝑦
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This is known as the pinhole projection equation and the matrix 𝐾𝐾 is known as the intrinsic matrix. The 
resulting camera model has 5 parameters: two focal length values, two principal point values and 1 skew 
term. 

One unique characteristic of the perspective projection of a pinhole camera is that it preserves linearity. 
Lines in the world space are also lines in the image. This makes it easy to determine if an image has been 
corrected to a perspective projection or not. Straight lines appearing as curves is a sign of distortion 
(relative to a perspective projection), which we will discuss next. 

Deviations from the Pinhole Camera 
Now we will introduce models that include distortion. The simplest form of distortion is radial distortion. 
Radial distortion varies radially away from the principal point as is typically described by a polynomial 
function in 𝑟𝑟. This polynomial function contains only even powers of 𝑟𝑟 to ensure smoothness and 
symmetry about the optical axis. 

𝑅𝑅𝑛𝑛 = 1 + 𝑘𝑘1𝑟𝑟2 + 𝑘𝑘2𝑟𝑟4 + 𝑘𝑘3𝑟𝑟6 + ⋯ 

𝑟𝑟 =  �𝑥𝑥�2 + 𝑦𝑦�2 

We can introduce this distortion into the previously defined pinhole model to get a radially distorted 
pinhole model as follows: 

�𝑢𝑢𝑣𝑣� =  �
𝑓𝑓𝑥𝑥𝑥𝑥�𝑅𝑅𝑛𝑛 + 𝛼𝛼𝑦𝑦� + 𝑐𝑐𝑥𝑥
𝑓𝑓𝑦𝑦𝑦𝑦�𝑅𝑅𝑛𝑛 + 𝑐𝑐𝑦𝑦

�   

 

 

 

 

 

 

 

 

By introducing the radial distortion model, we can model distortion that varies radially such as the 
pincushion or barrel distortion. Most implementations of radial distortion only use 3 terms, but it is 
possible to use more in some applications. Typically, this is not necessary and can result in overfitting of 
data when calibrating on datasets that are sparse as is true with most traditional calibration methods.  

  

Figure 5 No distortion (left), pincushion distortion (middle), and barrel distortion (right) 



 

 

To model more general distortion, additional terms can be added including a denominator polynomial, 
𝑅𝑅𝑑𝑑, and tangential distortion terms 𝑇𝑇𝑥𝑥 and 𝑇𝑇𝑦𝑦.  

𝑇𝑇𝑥𝑥 = �2𝑝𝑝1𝑥𝑥�𝑦𝑦� + 𝑝𝑝2(𝑟𝑟2 + 2𝑥𝑥�2)�(1 + 𝑝𝑝3𝑟𝑟2 + 𝑝𝑝4𝑟𝑟4 +⋯ ) 

𝑇𝑇𝑦𝑦 = �2𝑝𝑝2𝑥𝑥�𝑦𝑦� + 𝑝𝑝1(𝑟𝑟2 + 2𝑥𝑥�2)�(1 + 𝑝𝑝3𝑟𝑟2 + 𝑝𝑝4𝑟𝑟4 + ⋯ ) 

Some models such as the primary model featured in OpenCV simplifies and decouples the polynomial 
multiplier as follows: 

𝑇𝑇𝑥𝑥𝑥𝑥𝑥𝑥 = �2𝑝𝑝1𝑥𝑥�𝑦𝑦� + 𝑝𝑝2(𝑟𝑟2 + 2𝑥𝑥�2)�+ 𝑠𝑠1𝑟𝑟2 + 𝑠𝑠2𝑟𝑟4 

𝑇𝑇𝑦𝑦𝑦𝑦𝑦𝑦 = �2𝑝𝑝2𝑥𝑥�𝑦𝑦� + 𝑝𝑝1(𝑟𝑟2 + 2𝑥𝑥�2)�+ 𝑠𝑠3𝑟𝑟2 + 𝑠𝑠4𝑟𝑟4 

As you can see, this is a slightly different implementation of the tangential distortion function. 

This model can be made even more general by the addition of a denominator polynomial. This 
denominator polynomial is rarely used with the numerator. This is sometimes referred to as the division 
model [5]. 

𝑅𝑅𝑑𝑑 = 1 + 𝑑𝑑1𝑟𝑟2 + 𝑑𝑑2𝑟𝑟4 + 𝑑𝑑3𝑟𝑟6 + ⋯ 

The most general form of the distorted 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 model is: 

�𝑢𝑢𝑣𝑣� = �
𝑓𝑓𝑥𝑥 𝛼𝛼
0 𝑓𝑓𝑦𝑦

�

⎣
⎢
⎢
⎡𝑥𝑥�
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𝑦𝑦�
𝑅𝑅𝑛𝑛
𝑅𝑅𝑑𝑑

+ 𝑇𝑇𝑦𝑦⎦
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⎤

+ �
𝑐𝑐𝑥𝑥
𝑐𝑐𝑦𝑦� 

This form may be familiar to those who use the OpenCV camera model or are familiar with the work of 
Brown [2] [6]. With 𝑅𝑅𝑑𝑑 = 1, this is known as the Brown-Conrady Model. With 𝑅𝑅𝑛𝑛 = 1, this is known as 
the Division Model. 

 

Other Central Camera Models 
The next common model type is targeted at addressing the distortion of certain types of cameras known 
as equidistant or 𝑓𝑓𝑓𝑓 projection. Many wide field of view lens designs use this type of projection to fit 
very wide field of views onto a reasonably sized sensor.  



 

 

 

Figure 6 Ray trace of projection for an f theta camera 

The 𝑓𝑓𝑓𝑓 form of the projection model can be derived by dividing the original projection function by 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

and multiplying by 𝜃𝜃. This is equivalent to multiplying by 𝜃𝜃
𝑟𝑟
.  
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With the addition of distortion from the nominal 𝑓𝑓𝑓𝑓  projection, we arrive at another well-known model, 
the Kannala or Kannala Radial model. [3]  

�𝑢𝑢𝑣𝑣� = �
𝑓𝑓𝑥𝑥 𝛼𝛼
0 𝑓𝑓𝑦𝑦

�
𝜃𝜃
𝑟𝑟 �
𝑥𝑥�𝑅𝑅𝜃𝜃 
𝑦𝑦�𝑅𝑅𝜃𝜃

� + �
𝑐𝑐𝑥𝑥
𝑐𝑐𝑦𝑦� 

Note that for 𝑓𝑓𝑓𝑓 projection models, it is common to use distortion terms in 𝜃𝜃 instead of in 𝑟𝑟.  

𝑅𝑅𝜃𝜃 = 1 + 𝑘𝑘1𝜃𝜃2 + 𝑘𝑘2𝜃𝜃4 + 𝑘𝑘3𝜃𝜃6 + ⋯ 

This model produces the well-known “fisheye” distortion shown in the image below. 

 

 

 

 

 

 

 

  

Figure 7 Fisheye distortion 



 

 

In Kannala’s paper, a more general version of this model is described which includes asymmetric radial, 
tangential, and Fourier terms. For brevity, we will not detail them out here, but the original paper 
discusses them in detail. This model is sometimes referred to as the Kannala Full, or just the Kannala 
model. A more general version of the equation is: 
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Beyond the Central Projection Model 
More complex camera systems exist that introduce mirrors and other optical elements into a traditional 
camera system. More specialized models exist for some of these systems where a central projection 
model may be too simplistic to capture the projection behavior of the system. Though these models are 
more complex, many of them can still be calibrated in the same manner that will be discussed in the 
following document in this series. 

Conclusion 
We have discussed the fundamentals of camera models and described the most commonly used camera 
models in detail. These models were, the Pinhole model, Brown-Conrady Model, and the Kannala model. 
A variety of variations upon these models such as the division model or the Kannala Full model were also 
discussed. The next topic is naturally on how to calibrate a camera with these models and finally how to 
use the calibrated results. Please read our other Technical Briefs on camera calibration and applications.  
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Glossary 
 

back-projection – a mapping from an N-1 dimensional space to a N dimensional space. For a camera, this 
is the process of computing the object space ray associated with a pixel in a camera image. This can only 
be done up to a scale factor for single camera which is why this results in rays rather than 3D points. 

camera calibration - the process of determining the optimal camera models of a mathematical camera 
model given a set of measurement data 

camera model – a mathematical model that represents the forward and backward projection function of 
a camera system  

extrinsic parameters – the set of parameters that allows of the unique determination of a camera 3d 
location and orientation in space 

homogeneous coordinates – coordinates of a projective space appended with an extra parameter that is 
scale invariant. The extra parameter is often set to 1. 

homogeneous transformation matrix – an affine transformation that transforms a homogenous point by 
rotating and translating 

intrinsic parameters – the set of parameters that define the internal camera parameters that realize its 
projection function 

projection – a mapping from an N dimensional space to an N-1 dimension. In the context of a camera, 
this is a mapping from the 3D world, to the 2D image coordinates. 
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