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• Shock is a persistent challenge – is discussed at this forum every year

• Primary Question: How well does Explicit Dynamics FEA perform for a spacecraft-like structure?

• NASA ShockSat used here as an open-source case study, focusing on impact hammer tests 

MOTIVATION
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• NASA ShockSat Background

• Analysis Approach & Model

• Physical Insights from Test and Analysis

• Conclusions

OVERVIEW
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• Metallic structure 
suspended from top

– 1.5’ sq x 5’H, ~200 lbs

– Mostly 0.125” plate

– Thick strut, dish & doublers

• Various types of joints (J#)

• 36 shock triax 
accelerometers

• Impact hammer strikes are 
point shock source

– Axial (+Z)

– Normal (-X)

NASA SHOCKSAT TEST ARTICLE - REFRESHER
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What it is:

• Fully-nonlinear, transient finite element analysis method

– Direct time integration, solves conservation equations 

• Specifically designed for stress-wave propagation = fundamental physics of shock transmission

– No limitations on nonlinearities or time scales (frequency bandwidth)

Application here:

• Translate NASA-provided NASTRAN FEM into Abaqus\Explicit, with minimal modification

• Directly apply measured impact force, compute event out to 100 ms

• Signal process data from simulation & experiment identically

• In-depth comparison of measurements and predictions without subsequent tuning

APPROACH  –  EXPLICIT DYNAMICS FEA
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• NASA-provided, modal-correlated to < 200 Hz

– Shell elements ~0.25” sized → ~7 elems./wavelength at 10 kHz

• Kept linearized joint treatments (e.g. rigid patches with zero-length springs)

– No contact or high-fidelity fastener modeling used, though easily could have

• Only modifications made here:

– Replaced point mass-rigid accelerometers with explicit models

– Added simple estimate of Rayleigh damping from modal test data

MODEL OVERVIEW
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• Selected nominal hits among replicates for two different impact orientations

– There was some variability in forcing function, especially for normal hits (soft strike point)

– Significant lack of energy above characteristic pulse frequencies (2 & 4 kHz)

MODEL EXCITATION -  HAMMER IMPACTS
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Same force levels - but different: impulse, waveforms & direction

74 lbf-s 
impulse

34 lbf-s 
impulse

Time-shifted for clarity
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STRESS WAVE PROPAGATION

Hit Normal (X) Hit Axial (Z)
• Animations shown in 

slow-motion until 2 ms

• Effect of impact 
orientation seen

– Shock energy input 
delivered

Distinct wave 
propagation sensitivity 
to impact orientation
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SAMPLE RESPONSE:  NORMAL AT SOURCE
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SAMPLE RESPONSE:  NORMAL ON CROSS BHD

Z

Y

X



11

Spacecraft and Launch Vehicle Dynamic Environments Workshop 2024

EXPECTATIONS FROM PHYSICS

D. A. Russell, 2016. The Pennsy lv ania State Univ ersity

https://www.acs.psu.edu/drussell/demos/wav es/wav emotion.html

Longitudinal Waves – Compression

Transverse Waves – Flexure

Compression

Flexure

Wave types display unique signatures

Michigan Technological Univ ersity, 2024.

https://www.mtu.edu/geo/community /seismology/learn/seismology-study/
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• Arranged measured 
& predicted data by 
distance

WAVE ARRIVAL CORRELATION -  NORMAL RESPONSES
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• Compression, 
shear arrive 1st

• Dispersive flexural 
wave arrivals later

WAVE ARRIVAL CORRELATION -  NORMAL RESPONSES
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FEA

Test

Analytic

F(t)

Observe fundamental wave propagation driving transient signal waveforms
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A9

A16

A25

A31

WAVE ARRIVAL CORRELATION -  AXIAL RESPONSES

• Dominated by 
compression, shear 

• Insensitive to flexure

(longitudinal)

(shear)

(bending)

FEA

Test

Analytic
F(t)

Observe fundamental wave propagation driving transient signal waveforms
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SRS RESPONSE VS.  D ISTANCE

• Apparent SRS attenuation with distance, middle two locations are at comparable levels

– Spans across multiple structural features, joints

• FEA predictions are quite good throughout - remarkable considering low modeling effort

FEA

Test

FEA

Test

FEA captures trend & level, response differ greater than excitations alone
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A16

A25

A31
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• Suggests some apparent attenuation 
across the joint - FEA & Test are consistent

– No ‘attenuation’ seen in off-excitation-axis

– Similar findings at welded bulkhead joints

RESPONSE ACROSS A JOINT (J1: BOLTED CRES/AL)

A16

A17FEA

Test

FEA

Test

FEA prediction with linearized joints is remarkable
– suggests lack of slip, nonlinearity
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SOURCE & FAR F IELD:  FEA VS.  TEST

A9

A31

FEA

Test

Accurate across the 
entire ‘vehicle’ → 

Underlying transient 
physics are missing from 

empirical scaling

A9X

A31Z

A9Z

A31X

Empirical is SRS onlyFEA provides a physical basis
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CONCLUSIONS

Nature of shock excitation and wave propagation are important, 

credible methods need to consider this

• Low-effort application of explicit dynamics FEA to ShockSat performed 
very well – Demonstrated success now for SC & LV systems

• Physics-based modeling is necessary to get it right, provides actionable 
insights

– SRS alone is non-unique, incomplete

• Surprising accuracy attained with low-fidelity joint modeling here – 
Elaborate treatments may not always be needed
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