INSIGHTS INTO THE SHOCK RESPONSE OF THE NASA SHOCKSAT FROM EXPLICIT DYNAMICS FEA

quartus ENGINEERING FORWARD

Spacecraft and Launch Vehicle Dynamic Environments Workshop June 5, 2024

JOSHUA E. GORFAIN

MOTIVATION

- Shock is a persistent challenge is discussed at this forum every year
- Primary Question: How well does Explicit Dynamics FEA perform for a spacecraft-like structure?
- NASA ShockSat used here as an open-source case study, *focusing on impact hammer tests*

OVERVIEW

- NASA ShockSat Background
- Analysis Approach & Model
- Physical Insights from Test and Analysis
- Conclusions

NASA SHOCKSAT TEST ARTICLE - REFRESHER

- Metallic structure suspended from top
 - 1.5' sq x 5'H, ~200 lbs
 - Mostly 0.125" plate
 - Thick strut, dish & doublers
- Various types of joints (J#)
- 36 shock triax accelerometers
- Impact hammer strikes are point shock source
 - Axial (+Z)
 - Normal (-X) —

17

J6

J5

盘

APPROACH – EXPLICIT DYNAMICS FEA

What it is:

- Fully-nonlinear, transient finite element analysis method
 - Direct time integration, solves conservation equations
- Specifically designed for stress-wave propagation = fundamental physics of shock transmission
 - No limitations on nonlinearities or time scales (frequency bandwidth)

Application here:

- Translate NASA-provided NASTRAN FEM into Abaqus\Explicit, with minimal modification
- Directly apply measured impact force, compute event out to 100 ms
- Signal process data from simulation & experiment *identically*
- In-depth comparison of measurements and predictions *without subsequent tuning*

Model Overview

- NASA-provided, modal-correlated to < 200 Hz
 - Shell elements ~0.25" sized \rightarrow ~7 elems./wavelength at 10 kHz
- Kept linearized joint treatments (e.g. rigid patches with zero-length springs)
 - No contact or high-fidelity fastener modeling used, though easily could have
- Only modifications made here:
 - Replaced point mass-rigid accelerometers with explicit models
 - Added simple estimate of Rayleigh damping from modal test data

MODEL EXCITATION - HAMMER IMPACTS

- Selected nominal hits among replicates for two different impact orientations
 - There was some variability in forcing function, especially for normal hits (soft strike point)
 - Significant lack of energy above characteristic pulse frequencies (2 & 4 kHz)

Same force levels - but different: impulse, waveforms & direction

STRESS WAVE PROPAGATION

- Animations shown in slow-motion until 2 ms
- Effect of impact orientation seen
 - Shock energy input delivered

Distinct wave propagation sensitivity to impact orientation

artus

Hit Normal (X)	Step: Shock Frame: 0 Total Time: 0.000000	Hit Axial (Z)	Step: Shock Frame: 0 Total Time: 0.000000
	Phase are		
z x x y		z x y	

SAMPLE RESPONSE: NORMAL AT SOURCE Tap Test 1 (+X Face Normal): A9X (Sta. 1.875): Source +X Face +Y Edge (10k) 2000 10^{4} Acceleration (g) 0005-000 . MMMMM An AMA CONTRACTION 10² SRS (g), Q=10 Test h3 FEA -4000 20 10⁰ 2 6 8 10 12 14 16 18 0 4 50 Velocity (in/s) 10⁻² 10³ 10^{2} 10⁴ 10⁵ 10^{1} Х 10² -50 -100 2 10 14 18 20 DFS Amplitde (g) 10⁻² 4 6 8 12 16 0 20 Displacement (mil) -20 Test h3 FEA -40 10^{-4} 10⁵ 0 2 6 8 10 12 14 16 18 20 10^{1} 10² 10^{3} 10⁴ Time (ms) Frequency Hz)

📿 quartus

SAMPLE RESPONSE: NORMAL ON CROSS BHD

Х

EXPECTATIONS FROM PHYSICS

D. A. Russell, 2016. The Pennsylvania State University https://www.acs.psu.edu/drussell/demos/waves/wavemotion.html

WAVE ARRIVAL CORRELATION - NORMAL RESPONSES

WAVE ARRIVAL CORRELATION - NORMAL RESPONSES

WAVE ARRIVAL CORRELATION - AXIAL RESPONSES

SRS RESPONSE VS. DISTANCE

- Apparent SRS attenuation with distance, middle two locations are at comparable levels
 - Spans across multiple structural features, joints

artus

• FEA predictions are quite good throughout - remarkable considering low modeling effort

FEA captures trend & level, response differ greater than excitations alone

RESPONSE ACROSS A JOINT (J1: BOLTED CRES/AL)

FEA prediction with linearized joints is remarkable – suggests lack of slip, nonlinearity

artus

- Suggests some apparent attenuation across the joint - FEA & Test are consistent
 - No 'attenuation' seen in off-excitation-axis
 - Similar findings at welded bulkhead joints

SOURCE & FAR FIELD: FEA VS. TEST

Axial Path, Normal Response - Normal Tap 10^{4} Axial Path, A9X - Normal Tap ල 2000 A9X eleration Mrapping and Mr -2000 SRS (g), Q=10 Test FEA ₹ ₋₄₀₀₀ 12 16 20 0 1/ Time (ms) A31Z Axial Path, A31Z - Normal Tap <u>б</u> 10⁰ ้อ -20 A9X: sta.1.9 -40 A31Z: sta.57 10 12 20 0 14 Time (ms) 10² 10³ 10^{4} Frequency (Hz) FEA Empirical is SRS only FEA provides a physical basis Test Axial Path, Axial Response - Axial Tap Axial Path, A9Z - Axial Tap A9Z: sta.1.9 10 (g) A31X: sta.57 200 MannonNonApproxemment - Test -200 A9Z FEA SRS (g), Q=10 01 -400 10 12 16 20 0 14 Time (ms) Axial Path, A31X - Axial Tap σ MARM A31X 10° FFA 16 18 20 Time (ms) 10^{2} 10^{3} 10^{4} Frequency (Hz) artus

A31

Accurate across the entire 'vehicle' → Underlying transient physics are missing from empirical scaling

CONCLUSIONS

- Low-effort application of explicit dynamics FEA to ShockSat performed very well – *Demonstrated success now for SC & LV systems*
- Physics-based modeling is necessary to get it right, provides actionable insights
 - SRS alone is non-unique, incomplete
- Surprising accuracy attained with low-fidelity joint modeling here Elaborate treatments may not always be needed

Nature of shock excitation and wave propagation are important, credible methods need to consider this

Acknowledgements

- Sam Yunis (NASA ret.) for creating and sharing ShockSat
- Harry Armstrong & Luke Chiang (Quartus) for their help with some of the modeling

